In this post, we share how Hapag-Lloyd developed and implemented a machine learning (ML)-powered assistant predicting vessel arrival and departure times that revolutionizes their schedule planning. By using Amazon SageMaker AI and implementing robust MLOps practices, Hapag-Lloyd has enhanced its schedule reliability—a key performance indicator in the industry and quality promise to their customers.
Machine Learning
Complete ML platform with Amazon SageMaker for building, training, and deploying machine learning models at scale
In this post, we demonstrate how to implement real-time fraud prevention using GraphStorm v0.5's new capabilities for deploying graph neural network (GNN) models through Amazon SageMaker. We show how to transition from model training to production-ready inference endpoints with minimal operational overhead, enabling sub-second fraud detection on transaction graphs with billions of nodes and edges.
In this post, we showed how to use SageMaker and Comet together to spin up fully managed ML environments with reproducibility and experiment tracking capabilities.
Orchestrating machine learning pipelines is complex, especially when data processing, training, and deployment span multiple services and tools. In this post, we walk through a hands-on, end-to-end example of developing, testing, and running a machine learning (ML) pipeline using workflow capabilities in Amazon SageMaker, accessed through the Amazon SageMaker Unified Studio experience. These workflows are powered by Amazon Managed Workflows for Apache Airflow.
In this post, we show how to integrate AWS DLCs with MLflow to create a solution that balances infrastructure control with robust ML governance. We walk through a functional setup that your team can use to meet your specialized requirements while significantly reducing the time and resources needed for ML lifecycle management.